
RESEARCH ARTICLE Open Access

A systematic review of changing malaria
disease burden in sub-Saharan Africa since
2000: comparing model predictions and
empirical observations
Alice Kamau1,2*, Polycarp Mogeni1, Emelda A. Okiro1, Robert W. Snow1,2 and Philip Bejon1,2

Abstract

Background: The most widely used measures of declining burden of malaria across sub-Saharan Africa are
predictions from geospatial models. These models apply spatiotemporal autocorrelations and covariates to parasite
prevalence data and then use a function of parasite prevalence to predict clinical malaria incidence. We attempted
to assess whether trends in malaria cases, based on local surveillance, were similar to those captured by Malaria
Atlas Project (MAP) incidence surfaces.

Methods: We undertook a systematic review (PROSPERO International Prospective Register of Systematic Reviews;
ID = CRD42019116834) to identify empirical data on clinical malaria in Africa since 2000, where reports covered at
least 5 continuous years. The trends in empirical data were then compared with the trends of time-space matched
clinical malaria incidence from MAP using the Spearman rank correlation. The correlations (rho) between changes in
empirically observed and modelled estimates of clinical malaria were displayed by forest plots and examined by
meta-regression.

Results: Sixty-seven articles met our inclusion criteria representing 124 sites from 24 African countries. The single
most important factor explaining the correlation between empirical observations and modelled predictions was the
slope of empirically observed data over time (rho = − 0.989; 95% CI − 0.998, − 0.939; p < 0.001), i.e. steeper declines
were associated with a stronger correlation between empirical observations and modelled predictions. Factors such
as quality of study, reported measure of malaria and endemicity were only slightly predictive of such correlations.

Conclusions: In many locations, both local surveillance data and modelled estimates showed declines in malaria
burden and hence similar trends. However, there was a weak association between individual surveillance datasets
and the modelled predictions where stalling in progress or resurgence of malaria burden was empirically observed.
Surveillance data were patchy, indicating a need for improved surveillance to strengthen both empiric reporting
and modelled predictions.
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Background
The burden of malaria has been reported to have de-
clined across sub-Saharan Africa (SSA) [1–3]. However,
uncertainty on the magnitude of this transition remains,
and it is unclear to what extent the decline is spatially
uniform across SSA [4–6]. Our current understanding of
the declining burden of malaria across much of SSA has
relied on modelled estimations based on historical epi-
demiological data, predictions in time and space based
on sparse parasite prevalence data, and presumed im-
pacts of interventions [1, 7, 8].
The traditional metric for classifying the quantity of

malaria in a given location, or endemicity, has been
parasite prevalence (referred to in literature as the “para-
site rate (PR)”), which is derived from community-based
surveys of infection [2, 9]. In current models of malaria
disease burden in African, empirical data on 27,573
spatially and temporally unique PR observations are first
modelled in time and space using a range of environ-
mental, population and intervention covariates to pro-
vide approximately nine hundred thousand 5 × 5 km
gridded surfaces of estimated malaria prevalence for
every year between 2000 and 2015 [1]. These surfaces
are then used in conjunction with limited historical epi-
demiological data on disease incidence, malaria-specific
mortality and case-fatality rates [1, 8] to predict both
malaria clinical incidence and mortality at a 5 × 5 km
grid surface across SSA based on an estimated function
of PR [1, 8]. The uncertainty in the predictions of para-
site prevalence and disease burden was measured
through out-of-bag sampling and reported as Bayesian
credible intervals [1, 8]. The World Health Organization
(WHO) has adopted these methods to estimate malaria
burden in SSA countries where routine data is thought
to be unreliable. During the estimations for 2017, the
WHO [10] included adjusted and unadjusted empirical
routine data for Botswana, Cape Verde, Comoros,
Ethiopia, Namibia, Rwanda, Sao Tome and Principe,
South Africa and Swaziland (Eswatini). In 2018, the list
of countries where routine data was used expanded to
include Eritrea, the Gambia, Madagascar, Mauritania,
Mayotte, Senegal and Zimbabwe [11]. In 2019, the list
was extended to include Djibouti [3].
Geostatistical and epidemiological models are rarely

compared with empirical surveillance data. Here, the ob-
jective was to conduct a systematic review of published
observations of temporal changes in malaria disease bur-
den in SSA since 2000, updated from previous reviews
[12–14], and compare this with the modelled predictions
of changing clinical incidence of malaria over the same
time period. In the Malaria Atlas Project (MAP) models,
empirical data on PR observations are first modelled in
time and space to provide estimated malaria prevalence.
These surfaces of PR are then used to predict malaria

clinical incidence at 5 × 5 km resolutions across Africa
for each year between 2000 and 2015. We used these
modelled predictions of changing clinical incidence of
malaria to compare spatially matched clinical cases iden-
tified in our literature review over the same time period.
While there are factors that might impact on malaria
cases recorded by health facilities, we attempted to as-
sess whether trends in malaria cases are in agreement
with MAP incidence surfaces.

Methods
Search strategy and selection criteria
A systematic review and meta-analysis was conducted
using PRISMA guidelines [15]. The protocol was regis-
tered in the PROSPERO International Prospective Regis-
ter of Systematic Reviews (ID = CRD42019116834).
A literature search was performed in PubMed, MED-

LINE, EMBASE, Web of Science and reference lists of
publications between January 2000 and August 2018 on
the test positivity rate/incidence of clinical malaria in
SSA. A search strategy combining relevant terms and
the names of the African countries was applied (Table 1).
Studies considered included published papers in peer-
reviewed journals, reports, book chapters and theses. We
also manually screened citations of relevant articles to
identify additional studies. In addition, we contacted au-
thors of published hospital data to provide help with an-
nual data not possible to extract directly from the
published source.
For studies to be included in the review, they had to

fulfill the following criteria: (i) articles reporting data
from SSA; (ii) articles that included data on the follow-
ing outcomes of interest: clinical malaria test positivity
rate, malaria case period prevalence, incidence from
facility-based surveillance, or community-based disease

Table 1 Search terms

(malaria OR plasmodium)
AND

(trend OR time series OR recession OR resurgence OR temporal OR
decline OR increase OR change OR changing)

AND

(incidence OR prevalence)
AND

(Africa* OR Angola OR Benin OR Botswana OR Burkina Faso OR Burundi
OR Cameroon OR Central African Republic OR Chad OR Congo* OR
Cote d’Ivoire OR Equatorial Guinea OR Eritrea OR Ethiopia OR Gabon OR
Gambia* OR Ghana OR Guinea* OR Kenya OR Liberia OR Madagascar OR
Malawi OR Mali OR Mauritania OR Mauritius OR Mozambique OR
Namibia OR Niger OR Nigeria OR Rwanda OR Senegal OR Sierra Leone
OR Somalia OR Sudan OR Tanzania OR Togo OR Uganda OR Zambia OR
Zimbabwe)
AND

“humans”[MeSH Terms]
AND
year=“2000-2018”
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surveillance; and (iii) articles reporting continuous data
for five or more years since 2000. We excluded studies
that (i) reported data from countries where in 2017 the
WHO used empirical routine data for morbidity estima-
tion, and where most countries are near malaria elimin-
ation: Cape Verde, Comoros, Sao Tome and Principe,
South Africa and Swaziland (Eswatini) [2, 10]; (ii) re-
ported only repeat cross-sectional survey data on para-
site prevalence or vector sporozoite rates in the
community; (iii) reported modelled disease projections
without empirical data; and (iv) reported only on verbal
autopsy defined malaria mortality. For studies published
in more than one report, the most comprehensive (years
covered or availability of data for extraction) report was
included.
The study selection process began by screening titles

and abstracts retrieved from different electronic data-
bases. We then reviewed the full text of eligible articles
and compared all the retrieved articles with those in-
cluded in the previous three reviews [12–14] to ensure
no studies were missed.

Data abstracted
Two authors (AK and PM) independently screened the
articles for inclusion and extracted data on general infor-
mation, i.e. first author name, year of publication, study
location, country, source of data (hospital surveillance,
cohort studies or clinic registers), sample size, age range,
number of cases, test positive rate (defined as the num-
ber of positive malaria tests per 100 tests conducted), or
incidence rate of malaria from tables, figures, text or
summary data in the articles. Disagreements between re-
viewers were resolved through consensus. We used
Gwet’s AC1 statistic to assess the inter-rater agreement
for study inclusion [16].

Critical appraisal
The quality of all included studies was assessed using
the Joanna Briggs Institute Prevalence Critical Appraisal
Tool [17]. Each study was assessed on 10 items; a score
of 10% (yes) or 0% (no/unclear) was assigned and was
summed across all items to generate an overall quality
score that ranged from 0 to 100% (Additional file 1).
Based on the overall score, we used two tertiles to split
the studies into three groups. Studies were classified as
having a high (< 34%), moderate (34–67%) or low
(> 67%) risk of bias.

Geographic information
Geo-referencing was undertaken through matching to
previous health facility geo-coded master facility lists
[18] and where not available using Google Earth or coor-
dinates provided in the original publication. We as-
sumed a representative study area for purposes of

matching to modelled predictions of a radial distance of
30 km for each hospital [19], 10 km for large health cen-
tres and 5 km for dispensaries/clinics/health posts [20].

Data analysis
Empirical data extracted from published reports were
annualized, classified as hospital in-patient admissions,
out-patient case burdens or community cohort inci-
dence. An African region was assigned to each study
based on the country of enrollment. The average endem-
icity at the start of the study’s surveillance period was
defined using the MAP predicted Plasmodium falcip-
arum parasite rate in children aged 2–10 years per site
[1]. Study-level characteristics included the following:
quality of study, geographic regions, source of data, re-
ported measure of malaria, average starting parasite
prevalence in children aged 2–10 years, sum of residuals,
slope and sample size.
For each study, we time-space matched empirically re-

corded clinical incidence/test positivity rate of P. falcip-
arum with modelled predictions of clinical malaria
incidence developed by the MAP [1]. We extracted the
mean clinical malaria incidence for all pixels in the spe-
cified raster that fell within the circular buffer for each
geo-reference point for each year of the empirical sur-
veillance data.
The correlation (rho) between changes in empirical

clinical incidence/test positivity rate and modelled pre-
dictions of clinical malaria incidence was assessed using
Spearman’s Rank correlation. Correlations were then
classified as strong positive association (rho ≥ 0.6), mod-
erate positive association (0.2 < rho < 0.6) or weak associ-
ation (rho ≤ 0.2). A random effects meta-analysis was
used to summarize the rho (Additional file 2); meta-
analysis methods weight each study as a function of the
between-study variance and within-study variance. We
assessed the level of heterogeneity using Cochran’s Q
statistic and I2. We used the forest plot to display the
rho and the confidence intervals. Outliers were identified
using the leave-one-out method, whereby we reran the
meta-analysis iteratively removing studies. We used the
funnel plots and Egger’s test to assess for publication
bias [21].
To explore possible sources of heterogeneity, we per-

formed meta-regression and sub-group analysis. In the
sub-group analysis, the pooled correlation in each sub-
group and within-group heterogeneity were obtained. In
the meta-regression analysis, we examined the relation-
ship between the study-level characteristics and the cor-
relation of the two metrics using study as the unit of
analysis [22]. Data analysis was performed using Stata,
version 13 (Stata Corporation, College Station, TX) and
R version 3.5.1 (R Core Team (2018), Vienna, Austria).
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Results
The initial search yielded 4203 articles (Fig. 1). We then
examined previous reviews [12–14] and found additional
four articles that were relevant to our review which had
been missed using our search terms [23–26]. We re-
moved 2098 articles as they were duplicates between dif-
ferent electronic databases. After screening titles and
abstracts of the remaining 2109 articles, we excluded
1994 articles because they did not fulfil the inclusion

criteria. Following a full-text review of 115 articles, a fur-
ther 48 articles were excluded because they either re-
ported data from the same site, reported smoothed data,
reported parasite prevalence or did not meet the
complete 5-year restriction (Fig. 1). Finally, the study in-
cluded data from 67 articles, where in some cases one
publication reported data from more than one site.
Three articles reported data from the same site but in
different time periods, and/or from in-patient or out-

Fig. 1 A summary flow of study selection process
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patient records [27–29]. We obtained primary data, not
possible to extract directly from the published source,
for six publications related to hospital admissions at 24
sites across three countries (Malawi, Uganda and Kenya)
(Additional file 3) [19, 30–34]. The level of agreement
for study selection between the two authors was 96.4%
(Gwet’s AC1 = 0.961), and disagreements were resolved
after discussion.
Nineteen (28%), twenty-seven (41%) and twenty-one

(31%) articles were classified as having high, moderate
and low risk of bias, respectively. The 67 articles resulted
in a total of 124 geo-referenced locations where data
was available for five or more years, covering 24 African
countries since 2000 (Fig. 2). Data was obtained from
the out-patient records (41%), in-patient records (30%),
combined out-patient and in-patient records (27%), and
cohort studies (2%) (Table 2).
In the subsequent comparator analyses of modelled

predictions of changing disease burden, 31/124 study
sites from 21 publications were not included. The rea-
sons for exclusion included the following: (i) 16 study
sites in Ethiopia, Namibia and Rwanda classified as hav-
ing reliable routine data to estimate malaria burden by
WHO since the comparison would not be relevant in
countries where surveillance data already feeds into the
WHO report; (ii) 13 study sites in Djibouti, Eritrea,

Ghana, Sudan, Zambia, Zanzibar and Zimbabwe that re-
ported malaria case at national or regional level, the
wide spatial extents of these data with likely inherent
large variations in disease risk, precluding comparisons
with modelled estimates; and (iii) two study sites
(Dielmo, Senegal and Bandiagara, Mali) that reported
community-cohort study data which we considered
methodologically different from passive case detection
(Additional file 3).
The remaining 93 sites from 46 publications included

28 (30%) sites that reported 5 years temporal data, 33
(36%) sites reported temporal data between 6 and 9 years
and 32 (34%) sites reported data between 10 and 15
years. Three sites (3%) reported data between 2000 and
2005, 32 (34%) sites reported data post-2005 and 58
(63%) sites reported data spanning the period pre- and
post-2005. The average starting parasite prevalence in
children aged 2–10 years was < 10% in 19 sites, 10–50%
in 53 sites and > 50% in 19 sites (Table 3). A sample of
graphical presentation of extracted data, display of
trend lines and the rho values were computed
(Additional file 4).
Among the 93 sites included in the comparative ana-

lysis, 33% (31/93) showed evidence of a rise during the
surveillance interval, and 67% (62/93) showed evidence
of a decline. The matched modelled estimates predicted

Fig. 2 Assembled data included in the review by country, the number of sites and the sample size; dark grey indicates countries that reported
national routine malaria case data, and the red dots indicate unique sites where data was identified

Kamau et al. BMC Medicine           (2020) 18:94 Page 5 of 11



a rise in 23 sites and a decline in 70 sites. In 59 (63.4%)
sites, the trends in both the empirical data and the mod-
elled prediction were similar. However, 21 sites showed
a rise in the empirical data while the modelled predic-
tions showed a decline, and in 13 sites, the empirical
data showed a decline while the modelled predictions
showed a rise (Gwet’s AC1 = 0.378). In addition, 47% of
the studies showed a strong positive association (rho ≥
0.6), 15% (14/93) showed a moderate positive association
(0.2 < rho < 0.6), and 38% (35/93) showed a weak associ-
ation (rho ≤ 0.2) (Additional file 5). Eight sites, four in
Kenya [19, 35], one in Mozambique [36], two in Uganda
[28, 32] and one in Zimbabwe [37], showed strong nega-
tive correlations (rho ≤ − 0.6) (Additional file 5) indicat-
ing that the trends in the observed data versus the
predicted data were markedly different. Four of the eight
sites were in low malaria transmission areas and were
classified as having a moderate risk of bias score. When
we assessed for outliers using the leave-one-out method,
there was no single study that was a substantial cause of
heterogeneity (Additional file 6). Further, there was no
evidence of publication bias (Egger’s test: p = 0.73 and
Additional file 7). The summary meta-analysis of these
studies showed a moderate positive association between
empirically recorded changes in clinical incidence/test
positivity rate and MAP modelled predictions of clinical
malaria incidence (rho = 0.51; 95% CI 0.37, 0.63; p <
0.001; unadjusted I2 = 69.63%), indicating substantial
heterogeneity.
When we explored possible sources of the observed

heterogeneity by univariate analysis using meta-
regression, we found that the slope of empirically re-
corded clinical incidence/test positivity rate (i.e. the rate
of the empirically observed decline) was the single most
important covariate, accounting for a 16% change in I2

(rho = − 0.989; 95% CI − 0.998, − 0.939; p < 0.001;
residual I2 = 58.8%) (Table 3). The quality of data
extracted, geographical region, reported measure of
malaria, source of data, average starting parasite preva-
lence in children aged 2–10 years and slope of modelled
clinical malaria incidence were additional sources of
heterogeneity. However, the percentage change in I2

from these factors was minimal (which were responsible
for percentage changes from 2% up to 9%, Table 3).
Sample size and sum of residuals did not seem to ex-
plain the heterogeneity observed (Table 3).
The slope of clinical incidence/test positivity rate

remained robust as a predictor of correlation even after
excluding studies with a high risk of bias (rho = − 0.989;
95% CI − 0.998, − 0.923; p < 0.001) and after adjusting
for the other study-level characteristics (rho = − 0.967;
95% CI − 0.997, − 0.689; p = 0.005; Additional file 8). As
a sensitivity analysis, we examined stratifying the slope
of empirically observed data as showing a decrease (< 0)

Table 2 Characteristics of the included studies (124 geo-referenced
locations from 67 articles)

Characteristics Summary statistics

Geographical region, n (%)

East Africa 45 (36.3%)

Southern Africa 29 (23.4%)

West Africa 26 (21.0%)

Horn of Africa 20 (16.1%)

Central Africa 4 (3.2%)

Quality of the study, n (%)

High risk of bias 41 (32.5%)

Moderate risk of bias 52 (41.3%)

Low risk of bias 33 (26.2%)

Data source, n (%)

In-patient 37 (29.8%)

In-patient and out-patient 34 (27.4%)

Out-patient 51 (41.1%)

Cohort studies 2 (1.6%)

Duration of reported data

5 years 38 (30.6%)

6–9 years 42 (33.9%)

10–15 years 44 (35.5%)

Reported data spanning period

2000–2005 5 (4.0%)

Post-2005 43 (34.7%)

Pre- and post-2005 76 (61.3%)

Average starting parasite prevalence in children aged 2–10 years

< 10% 40 (32.3%)

10–50% 64 (51.6%)

> 50% 20 (16.1%)

Measure of malaria, n (%)

Number of cases 40 (32.3%)

Test positive rate 62 (50.0%)

Incidence rate 22 (17.7%)

Data spatial level

Country 10 (8.1%)

District 19 (15.3%)

Point 84 (67.7%)

Region 11 (8.9%)

Sample size, median (IQR) 18,389 (5889, 49,616)

Geographical region was classified as East Africa, Central Africa, Southern
Africa and West Africa. Quality of study was classified as low, moderate and
high risk of bias. Source of data was classified as in-patient and/or out-patient.
Average starting parasite prevalence in children aged 2–10 years was classified
as low, < 10%; moderate, 10–50%; or high, > 50%. Measure of malaria
(incidence rate, test positivity rate or number of cases reported)
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or increase (≥ 0) and also found a significant association
in the mean difference of the correlation between the
observed data and the modelled prediction (rho = − 0.75;
95% CI − 0.86, − 0.60; p < 0.001; Fig. 3). We also exam-
ined the effect of the method of parasitological diagnosis
and found a significant difference in the correlation be-
tween the observed data and modelled prediction when
we stratified the analysis by the method of diagnosis
(Additional file 9).

Discussion
The demand for annual progress assessments of key
malaria indicators has fueled the use of advanced math-
ematical models in order to estimate and predict malaria

disease burdens and trends [1, 8, 38]. The application of
these models has enabled the production of predictive
maps of malaria risk [1, 8]. This review assesses whether
trends in malaria cases from empiric surveillance are in
agreement with the predictive model of malaria burden
in SSA developed by MAP. We used empirically re-
ported malaria data obtained from 93 health facility-
based study sites from 46 published articles.
The empirical data obtain in this review included sites

across the spectrum of malaria transmission intensity.
The majority (60%) of sites were in moderate malaria
transmission areas, 20% in low transmission areas and
20% in high transmission areas. There are previous re-
views on the trends of malaria burden in Africa [12–14].

Table 3 Sources of heterogeneity assessment based on meta-regression analyses (93 geo-referenced locations)

Factors Summary
statistics

Pooled
correlation (rho)

95% CI p value Residual I2

(%)
Percentage
change in I2 (%)

Geographical region, n (%)

Eastern Africa 42 (45.2%) 0.43 0.18, 0.62 0.01 67.7 2.8

Southern Africa 23 (24.7%) 0.33 0.07, 0.54

Western Africa 22 (23.7%) 0.73 0.53, 0.86

Central Africa 4 (4.3%) 0.30 − 0.42, 0.79

Horn of Africa 2 (2.1%) 0.84 0.60, 0.94

Quality of the study, n (%)

High risk of bias 28 (30.1%) 0.54 0.30, 0.71 < 0.001 63.2 9.3

Moderate risk of bias 41 (44.1%) 0.25 0.02, 0.46

Low risk of bias 24 (25.8%) 0.78 0.63, 0.87

Data source, n (%)

In-patient 34 (36.6%) 0.36 0.07, 0.59 0.01 68.1 2.3

In-patient and out-patient 17 (18.3%) 0.38 0.03, 0.65

Out-patient 42 (45.1%) 0.67 0.52, 0.78

Measure of malaria, n (%)

Number of cases reported 30 (32.3%) 0.26 − 0.01, 0.49 0.001 66.2 4.9

Test positive rate 47 (50.5%) 0.69 0.54, 0.79

Incidence rate 16 (17.2%) 0.30 − 0.06, 0.59

Average starting parasite prevalence
in children aged 2–10 years

< 10% 19 (20.4%) 0.33 − 0.08, 0.64 0.002 66.2 4.9

10–50% 55 (59.2%) 0.64 0.50, 0.75

> 50% 19 (20.4%) 0.11 − 0.20, 0.41

Sample size, median (IQR) 15,779 (3957, 35,981) 0.01 − 0.09, 0.11 0.83 71.8 − 3.1

Sum of residuals of empirical clinical
incidence/test positivity rate, median (IQR)

0.94 (0.06, 2.05) 0.07 − 0.03, 0.17 0.07 69.3 0.5

Sum of residuals of MAP modelled clinical
incidence, median (IQR)

0.12 (0.06, 0.30) − 0.02 − 0.65, 0.62 0.24 69.8 − 0.3

Slope of empirical clinical incidence/test
positivity rate, median (IQR)

− 0.003 (− 0.16, 0.001) − 0.989 − 0.998, − 0.939 < 0.001 58.8 15.5

Slope of modelled MAP clinical incidence,
median (IQR)

− 0.02 (− 0.03, 0.0001) − 0.99995 − 1.00, − 0.997 0.003 67.5 3.1

Summary unadjusted I2 = 69.63%. Percentage change in I2 computed as (summary unadjusted I2 − residual I2)/summary unadjusted I2 × 100
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Fig. 3 (See legend on next page.)
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Our updated review is the first to make a comparison
between empirical observations and modelled
predictions.
Forty-seven percent of the study sites showed a strong

positive association between empirical data and mod-
elled predictions, while 38% of the studies showed a
weak association. The single most important factor
explaining this variation was the slope of empirically ob-
served data over time (i.e. steep declines were associated
with stronger correlations with the predicted estimates).
If empirically recorded changes in malaria burden in a
specific geographical area were on a downward trend,
then the MAP modelled prediction was in agreement
with this change (Fig. 3). Conversely, MAP modelled
predictions showed a weak association with empiric sur-
veillance data in sites that showed a stalling in progress
or resurgence in empirically reported malaria burden.
Although quality of study seemed to explain some of the
variation, it was not a major cause of the heterogeneity
observed when tested using meta-regression. One might
expect studies classified as having a high risk of bias to
correlate poorly with the modelled predictions, but this
was not observed in our analysis (Table 3).
Although surveillance data on malaria cases recorded

by health facilities were used, such data are not yet con-
sidered sufficiently reliable to track change in endemic
countries in Africa [3]. This stems from varying clinical
definitions of malaria between sites, changing case defin-
ition, changes in healthcare access and treatment-
seeking behaviour, changes in diagnostic practice and
reporting procedures or completeness within health sys-
tems which could have potentially affected the trends of
malaria burden observed [3]. As a sensitivity analysis, we
examined the effect of the method of diagnosis on the
overall correlation. We found that the overall correlation
among studies with parasitological confirmation was
higher compared to studies with unclear methods of
malaria diagnosis (Additional file 9). Nevertheless, even
among those with documented parasitological confirm-
ation, 41% (29/70) of the sites had rho < 0.5. While not
all parasitologically diagnosed fevers are attributable to
malaria [39], both coincidental infection and attributable
fever may act as a valuable guide of malaria transmis-
sion. We could not evaluate the role of other factors on
the impact of observed trends as most of the articles did
not report on all the required information. However, our
review was limited to data published in peer review

journals with the assumption that data quality was ex-
amined during the peer review process.
Empirical reporting of malaria indicators should be a

vital component of national control programs and now
forms a central pillar of the Global Technical Strategy
for malaria [40]. Improvements in routine data capture
platforms [41], fever parasitological testing rates [42]
and geospatial techniques to interpreting routine data
[43, 44] have improved data availability in Africa [3]. In
our review, assembled data from the published literature
was patchy and was disproportionately from sites with
research investment. Despite two decades of substantive
investment in malaria control in Africa, we were able to
identify only 67 published studies on the changing bur-
den of malaria over this period. In many countries, rou-
tine data remain imperfect and are often unpublished,
and hence, modelling will still be required unless further
investments are made in surveillance capacity. Models
are valuable in making predictions and generating hy-
potheses, and it is essential that commensurate invest-
ments are made in surveillance data to support and test
these predictions. Another option is to develop sentinel
hospitals to validate and use alongside current models of
disease burden. While there are factors that might im-
pact on the definition of a malaria case, temporal trends
in hospitalized malaria cases may serve as a valuable bar-
ometer of community trends in disease burden and may
have value more broadly than just in malaria [45].
This review had some limitations. Some articles did

not report on all the required information. For example,
only 31% of the articles included in this review had a
low risk of bias due to the inherent methodological in-
sufficiencies in the published articles. However, we ac-
knowledge that the critical appraisal tool used in this
review was based on a scale in which various compo-
nents of the quality were scored and it is possible that it
included fewer items that were critical in maintaining in-
ternal validity. In addition, some studies had 5 years’
worth of data which might have led to large uncertainty
in the correlation. Secondly, there is limited published
literature on trends of malaria risk in certain regions,
particularly in central Africa. The studies reported in
this review represent just 24 of the 45 countries reported
to be endemic for malaria in WHO African region.
Thirdly, although there was no evidence of publication
bias, we must bear in mind the limitation of using pub-
lished literature to validate the modelled prediction. For

(See figure on previous page.)
Fig. 3 Forest plot of the correlation between empirical malaria cases and MAP clinical incidence stratified by the slope of empirical cases. Blue
squares represent the correlation of each study; the error bars through the blue boxes are the uncertainty intervals; the red diamonds show the
overall pooled correlation and in each sub-group; the horizontal tips of the red diamonds are the uncertainty level; weights are computed as the
inverse of within and between variance; references are listed alphabetically in the Additional file material
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instance, bias might be introduced if publication of data
that suggest malaria burden is worsening to encourage
further investment in malaria control or data that re-
flects a decline to justify investment are favoured. More
importantly, the use of incidence or number of cases
could have led to over- or underestimation of malaria
burden since passive surveillance can rarely be con-
ducted with certainty regarding the population accessing
care at any specific facility. Hence, variations in the
population access to a local facility, behavioural changes
or policy changes may lead to artefactual trends in mal-
aria in the absence of actual variation in transmission.

Conclusions
In many locations, both local surveillance data and mod-
elled estimates showed declines in malaria burden and
hence similar trends. However, there was spatial hetero-
geneity and some areas of Africa may have stable case
numbers or upward trends. In these areas, there was a
weak association between individual surveillance datasets
and the modelled predictions. At broad regional scales,
models may offer some guide on the overall trends in
disease burden but have reduced predictive accuracy at
local scales. The paucity of high quality, temporal clin-
ical data in Africa must be redressed, to avoid a contin-
ued dependence on models or to help train future
models. A public health priority should be high quality
and temporally and spatially dense clinical data in Africa
to empower national malaria control programs and to
strengthen both empiric reporting and modelled
predictions.
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